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Panels of mRNAs and miRNAs 
for decoding molecular 
mechanisms of Renal Cell 
Carcinoma (RCC) subtypes utilizing 
Artificial Intelligence approaches
Seyed Mahdi Hosseiniyan Khatibi1,2,3, Mohammadreza Ardalan2, Mohammad Teshnehlab4, 
Sepideh Zununi Vahed2* & Saeed Pirmoradi1*

Renal Cell Carcinoma (RCC) encompasses three histological subtypes, including clear cell RCC 
(KIRC), papillary RCC (KIRP), and chromophobe RCC (KICH) each of which has different clinical 
courses, genetic/epigenetic drivers, and therapeutic responses. This study aimed to identify the 
significant mRNAs and microRNA panels involved in the pathogenesis of RCC subtypes. The mRNA 
and microRNA transcripts profile were obtained from The Cancer Genome Atlas (TCGA), which were 
included 611 ccRCC patients, 321 pRCC patients, and 89 chRCC patients for mRNA data and 616 
patients in the ccRCC subtype, 326 patients in the pRCC subtype, and 91 patients in the chRCC for 
miRNA data, respectively. To identify mRNAs and miRNAs, feature selection based on filter and graph 
algorithms was applied. Then, a deep model was used to classify the subtypes of the RCC. Finally, 
an association rule mining algorithm was used to disclose features with significant roles to trigger 
molecular mechanisms to cause RCC subtypes. Panels of 77 mRNAs and 73 miRNAs could discriminate 
the KIRC, KIRP, and KICH subtypes from each other with 92% (F1-score ≥ 0.9, AUC ≥ 0.89) and 95% 
accuracy (F1-score ≥ 0.93, AUC ≥ 0.95), respectively. The Association Rule Mining analysis could identify 
miR-28 (repeat count = 2642) and CSN7A (repeat count = 5794) along with the miR-125a (repeat 
count = 2591) and NMD3 (repeat count = 2306) with the highest repeat counts, in the KIRC and KIRP 
rules, respectively. This study found new panels of mRNAs and miRNAs to distinguish among RCC 
subtypes, which were able to provide new insights into the underlying responsible mechanisms for 
the initiation and progression of KIRC and KIRP. The proposed mRNA and miRNA panels have a high 
potential to be as biomarkers of RCC subtypes and should be examined in future clinical studies.

Renal Cell Carcinoma (RCC) possesses the 15th rank among frequent cancers, according to the GLOBOCAN 
 report1. RCC comprises 3% of all malignant neoplastic cases in adults and approximately 90% of malignant kid-
ney  tumors2. Based on the American Cancer Society estimation, 1 in 46 men and 1 in 80 women will be diagnosed 
with RCC during their life. Also, the 5-year survival rate of patients with RCC is 73.7%3. Smoking, obesity, and 
hypertension are important risk factors that can affect RCC  occurance4. The incident and mortality rate of RCC 
highlight the importance of screening programs to develop reliable biomarkers for early detection of its  subtypes5.

The histological subtypes of renal cancer include; clear-cell RCC (ccRCC or KIRC, 60–80% of all patients), 
papillary RCC (pRCC or KIRP, 10–15%), chromophobe RCC (chRCC or KICH, 5–10%), and other rare subtypes 
(< 1%)6. KIRC is identified by mutations in the VHL (von Hippel–Lindau) gene and the loss of chromosome 
3p. The clinical severity of KIRC is higher compared with KIRP and KICH subtypes (5-year survival rate of 
55–60%, 80–90%, and 90%, respectively)7 due to the lack of effective biomarkers for earlier detection. In the 
early stages, KIRC is frequently asymptomatic and 25–30% of patients are often diagnosed at metastasis status; 
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hence, presenting a high mortality  rate8. KIRP is characterized by the loss of chromosome 9p and trisomy of 
chromosomes. In KIRP, a few subgroups of patients have a satisfactory treatment outcome, while a wide range 
of patients needs to develop promising treatment  strategies9,10. Small incidentally detected kidney masses have 
a major diagnostic dilemma since a section of them can be benign and managed  conservatively11. A lower-risk 
RCC, KICH, is identified by the loss of chromosomes and can pose a slight risk to a patient if cautiously treated 
with routine surveillance rather than  surgery11. KICH has enormous potential to be diagnosed earlier compared 
to other RCC subtypes due to its variable long-term  outcome12. Due to these distinct clinical and biological 
behaviors, differentiating and accurate detection of RCC subtypes via non-invasive and precise biomarkers 
confidently help physicians perform an appropriate therapeutic decision. This could be different from total and 
partial nephrectomy or even close follow-ups.

It has been shown that candidate biomarkers are not reliable for the diagnosis and prognosis of different RCC 
 subtypes13–16 and none of them can be employed in clinical  application17. Furthermore, computed tomography 
(CT) and abdominal ultrasound have problems including high costs and low sensitivity in the diagnosis of 
small  tumors4,18. Thus, the development of non-invasive and accurate screening for different types of RCC is a 
necessity. Comprehensive understanding of the molecular mechanisms of RCC subtypes is the main challenge 
in RCC research to identify novel and reliable molecular biomarkers.

This study was designed to introduce panels of mRNAs and miRNAs for discriminating different subtypes of 
RCC and detect remarkable molecules that have significant pathological roles in RCC subtypes through machine 
learning and artificial intelligence approaches. Firstly, we implemented reading and pre-processing of the RNA-
sequencing data. Next, to identify candidate features (mRNAs and miRNAs), we applied feature selection based 
on filter and graph algorithms. Then, to evaluate selected candidate features, we employed a deep learning model 
to classify the subtypes of RCC. Finally, an association rule mining algorithm was used for detecting remarkable 
features which play significant roles in firing molecular mechanisms to cause RCC subtypes.

Material and method
Material. In this study, the renal cell carcinoma data, including mRNA, miRNA, and clinical data were down-
loaded from the GDC portal (https:// portal. gdc. cancer. org) provided by The Cancer Genome Atlas (TCGA) 
 dataset19. Downloaded data were utilized to study the molecular mechanism of RCC subtypes, including ccRCC 
(KIRC), pRCC (KIRP), and chRCC (KICH). In the TCGA renal cell carcinoma project, 60,482 mRNAs expres-
sion and 1,881 miRNAs expression were reported for each patient. mRNA expression and clinical data were 
provided for 611 ccRCC patients, 321 pRCC patients, and 89 chRCC patients. Moreover, miRNA expression 
and clinical data were reported for 616 patients in the ccRCC subtype, 326 patients in the pRCC subtype, and 91 
patients in the chRCC subtype. Information on each subtype is presented in Table 1 in more detail. This study 
was conducted according to the principles of the Declaration of Helsinki (2013).

Method. The proposed method contained four main steps: reading and preprocessing, feature selection, 
classification, and filtering, as shown in Fig. 1. In the 1st and 2nd steps, miRNA, mRNA, and clinical data were 
preprocessed using the necessary preprocessing methods. In the 3rd step, irrelevant and redundant features 
(mRNAs and miRNAs) were removed from the data using the proposed algorithms. In the 4th step, the deep 
classifier model was applied to distinguish defined groups based on the candidate features obtained in the previ-
ous step. In the 5th step, the association rule mining algorithm was employed for identifying the predominant 
features among candidate features playing a crucial role in each group.

Reading and preprocessing. miRNA and mRNA data were interpreted as a matrix composed of rows 
and columns, with approximately equal numbers of rows/columns; 1033/1881 and 1021/60,482, respectively. 
Next, redundant features were removed from the data, including 2256 mRNAs from 60,482 mRNAs and 336 
miRNAs from 1881 miRNAs. Then, the hold-out cross-validation method was utilized to split data into three 
parts; training, validation, and test data by considering 70%, 10%, and 20% contributions, respectively. Finally, 
the min–max was used to scale mRNAs and miRNAs values in the [0 1] range. We applied z-score [Eq. (1)] for 
normalization and min–max [Eq. (2)] in feature selection and classification steps based on the need of the pro-
posed algorithms in these steps, respectively.

(1)y =
x − µ

σ

Table 1.  Subtypes information of RCC in detail.

Genomic Data

Number of patients with Renal Cell Carcinoma 
(RCC)

pRCC (KIRP) ccRCC (KIRC) chRCC (KICH)

mRNA 321 611 89

miRNA 326 616 91

https://portal.gdc.cancer.org
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In Eqs. (1) and (2), y and x are the normalized and raw feature values, respectively. The µ, σ, Min, and Max 
are defined as mean value, standard deviation, minimum value, and maximum value of x, sequentially.

Feature selection. In feature selection, we applied a new graph-based method for feature selection in 
mRNA and miRNA data  separately20. Therefore, a suitable subset of candidate features was identified using the 
proposed algorithms. In miRNA data, a graph-based algorithm extracted the suitable subset of candidate fea-
tures among 1545 features. However, in mRNA data, we first utilized the filter-based method for primary feature 
selection due to the existence of 58,226 features that could cause a high computational cost in the graph-based 
algorithm. Thus, the filter-based approach reduced the mRNA data dimension from 58,226 to 1000, and a graph-
based algorithm extracted the suitable subset of candidate features among 1000 features. In the following, the 
proposed algorithms are specified in more detail.

Filter method. Filter-based methods interpret the feature selection process by calculating importance 
measures for each feature separately. These algorithms do not apply any evaluation tool such as a classifier and 
are called classifier-independent techniques. Filter-based methods have low computational and time costs; how-
ever, they do not consider features interactions in the feature selection process. In this sub-step, we applied the 
filter-based method for primary feature selection in mRNA data. Filter-based method help to remove some 
irrelevant features and reduce the dimensionality for use in the graph-based process. Many filter methods have 
been introduced and utilized in various data with different domains, but a few are suitable for high dimension 
and low sample size (HDLSS)  data21. In this regard, we used the AMGM measure to evaluate the importance 
of features. The AMGM filter has illustrated its powerful potential in HDLSS  data22. The AMGM measure is 
calculated by Eq. (3).

In Eq. (3), the AMi and GMi are arithmetic mean, and the geometric mean of the ith feature are shown in Eqs. 
(4) and (5), respectively. Ri presents a dispersion of the ith feature among all samples. The higher Ri mentions a 
high dispersion and more relevant feature concerning defined phenotype. When Ri is close to one, which means 
the  ith feature has low relevancy with a defined phenotype.

If the  ith feature contains zero among reported values, then GMi = 0 based on Eq. (5) and AMGM measure 
will be inefficient. The modified version of AMGM is defined to avoid this problem based on Eq. (6). In the 
revised version, the exponential function was applied to features in the numerator and denominator of the 
AMGM formula.

Graph method. Recently, graph-based methods are used for feature  selection20,23. These methods display 
the search space as a graph using a graph representation of features. Then the principles of graph theory are 
employed for selecting the most relevant attributes. The graph-based method contains three sub-steps, includ-
ing graph representation of feature space, community detection/graph clustering, and selecting the significant 
nodes in each cluster.

Graph representation. In the first phase, the feature set is mapped to the graph space. The graph is defined by 
G =< F, E > , in which F = {F1, F2, . . . , Fn} and E = {

(
Fi , Fj

)
: Fi , FjǫF} is a set of nodes and edges, respectively. 

Each feature represents a node, and relevance between two features deputes an edge in the graph structure. In 
this work, the Wij is used to measure the relationship between two features Fi and Fj , as shown in Eq. (7).

(2)y =
1

Max −Min
(x −Min)

(3)AMGM:Ri =
AMi

GMi
∈ [1,+∞)

(4)AMi = xi =
1

n

n∑

i=1

xij

(5)GMi = (

n∏

i=1

xij)

1
n

(6)AMGM:Ri =

1
n

∑n
i=1 exp(xij)

(
∏n

i=1 exp(xij))
1
n

=
1

n× exp(xi)

n∑

i=1

exp(xij)

(7)Wij =

{
β × Relevancy − (1− β)× Redundancy ifi �= j
1 otherwise

(8)Relevancy =
AMGM(Fi)+ AMGM(Fj)

2
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Wij contains two parts, including relevancy and redundancy. In relevancy measure [Eq. (8)], AMGM(Fi) 
and AMGM(Fj) are the AMGM value of features Fi and Fj , respectively. Unlike the Bakhshandeh et al. that used 
symmetric uncertainty  measure20, we applied the AMGM to measure relevancy; due to its high potential in 
HDLSS data. In redundancy measure, the similarity of two features is calculated based on the cosine similarity 
by Eq. (9), in which 〈, 〉  and ‖.‖ are the inner product and Euclidean norm, respectively. Also, β ( 0 < β < 1 ) is 
the user-defined parameter that controls the potency of each part.

Ŵij is the normalized relationship between two features in the range [0 1], calculated by the SoftMax scaling 
function, as shown in Eq. (10). We employed Ŵij as the weight of edge in the graph structure. In the SoftMax 
scaling, W  , σ are the mean and standard deviation of weights, respectively.

Community detection. In the second phase, we applied a community detection algorithm to cluster graph space. 
The community detection algorithm performs clustering by finding groups of nodes that have high-density con-
nectors internally. Nodes in the same community have high similarity properties. Community detection assists 
in better understanding sophisticated networks, such as genomic data networks. In recent years, researchers 
have introduced various community detection algorithms. Louvain algorithm is one of the fastest among them. 
Louvain algorithm performs the clustering process by maximizing the modularity objective function, in which 
the quality of partitions is compared, by the community detection  process24. In addition, the Louvain algorithm 
is simple in the implementation phase.

In a graph with n nodes, the Louvain algorithm starts firstly with n communities by allocating each node 
to one community. The algorithm works based on a random selection of a node and transferring from its com-
munity to another one, then the gain modularity is calculated. This process is repeated until no improvement 
happens, and the algorithm will finish.

Node selection. In the third phase, we need to select the significant nodes in each community/cluster. In this 
regard, the Maximum Independent set (MIS) concept based on graph theory is utilized for node selection in 
subgraphs. A subset of the vertex set of a graph is independent if and only if it includes no pair of adjacent verti-
ces. Identifying the independent set with the maximum size is an NP-hard optimization problem. It is doubtful 
that there exists an efficient algorithm for finding an MIS of a graph. In this study, we applied the proposed algo-
rithm of R. Boppana et al. based  on25 to get the MIS in each community/cluster. Also, we defined the adjacency 
matrix to employ in the R. Boppana algorithm. It is a Boolean graph matrix that is calculated by Eqs. (11) and 
(12). Where γ is the user-defined parameter ( 0 < γ < 1).

Classification. In this step, we applied a classifier to evaluate the candidate features selected in the previous 
step. High accuracy (or any user-defined measure) of classification can mark the success of the feature selec-
tion method in choosing the relevant attributes. Otherwise feature selection method cannot identify relevant 
features.

Employing this method, we constructed a self-organizing deep auto-encoder model to classify data based 
on candidate features. A self-organizing deep auto-encoder is a specific type of deep auto-encoder that can 
determine its structure automatically, including the number of neurons and  layers26. The description details of 
the self-organizing deep auto-encoder are available in Supplementary Methods. First, the training process of 
the deep model and the model selection were performed by training and validation data, respectively. Next, the 
performance of the classification was estimated by employing test data. The accuracy,  F1-score, and AUC-ROC 
were applied to evaluate the classifier performance, as shown in Eqs. (13)–(16).

(9)Redanduncy =

∣∣∣∣
�Fi , Fj�

�Fi� × �Fj�

∣∣∣∣ = cos(θFi ,Fj )

(10)Ŵij =
1

1+ exp(−
Wij−W

σ
)

(11)Adjacency Matrix =
[
aij
]
n×n

(12)aij =

{
1 Ŵij > γ andi �= j
0 otherwise

Figure 1.  The overview of the proposed method: Five main steps, including reading, preprocessing, feature 
selection, classification, and association rule mining were applied to miRNA and mRNA expression data. (1) In 
the reading step, each dataset was downloaded from the TCGA repository. (2) The preprocessing step includes 
two sub-steps, cross-validation, and normalization. (3) The feature selection step contains two sub-steps, 
the filter method based on AMGM value for mRNA data and the graph-based method, in which candidate 
miRNAs/mRNAs with more relevance to RCC subtypes were selected. (4) A deep classifier model was utilized 
to evaluate the discrimination power of selected miRNAs/mRNAs. (5) The Association Rule Mining method 
discovers the hidden relationship between selected miRNAs/mRNAs and RCC subtypes in the first level and the 
complex relationship among selected miRNAs/mRNAs in the second level.

◂
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where TP, TN, FP, and FN are True Positive, True Negative, False Positive, and False Negative, respectively. AUC-
ROC is the area under the Receiver Operating Characteristic (ROC) curve.

Association rule mining. Association Rule Mining can extract efficient associations among data items. 
An association rule is defined in A → C form, in which A and C are Antecedent and Consequent, respectively. 
If we consider A as the feature(s) and C as the feature(s)/user-defined phenotype, association rule mining can 
show interesting dependency between feature(s)-feature(s) and feature(s)-phenotype. Therefore, it is reasonable 
to apply the association rule mining-based method to identify important features among candidate features. 
In this regard, we applied the association rule mining algorithm to candidate features, which was obtained in 
the feature selection step. In the following, some principal concepts of association rule mining are introduced. 
Support, Confidence, and Lift are three important measures in association rule mining. Let I = {i1, i2, . . . , id , y} 
be a set of items,  D = {d1, d2, . . . , dn} be a dataset of n instances, F = {f1, f2, . . . , fm} be the features space with 
m features, and Y = {0, 1} be the user-defined phenotype. The di can be presented as a tuple (Xi , yi) , where 
Xi ∈ f1 × f2 × · · · × fm and yi ∈ Y  . Also, A → C is an association rule, where A ⊂ I , C ⊂ I , and A ∩ B = ϕ . 
The support of rule A → C is the probability of instances containing both A and C, as shown in Eq. (17). Support 
evaluates the rule’s usefulness.

In Eq. (17), Support(A) = |{di|A ⊆ Xi , di ∈ D}| is the number of instances that includes the i itemset. The 
confidence of rule A → C is the probability, which shows the frequency of cases with C among all samples con-
taining A , as shown in Eq. (18). Confidence estimates the rule’s certainty.

The Lift of rule A → C determines the dependency between the occurrence of itemset A and C . When the 
Lift value is more (less) than one, the occurrence of A is positively (negatively) correlated with the occurrence of 
C . If the Lift value is equal to one, then A and C are independent. The Lift value is shown in Eq. (19).

FP‑growth algorithm. Association rule mining mainly contains two phases: Frequent itemset generation and 
Rule generation. In the Frequent itemset generation, the algorithm generates all itemsets iteratively, then itemset 
that its support count is more than the min_support (user-defined threshold) reported as a frequent itemset. In 
the rule generation, association rules are made based on frequent itemsets. Agrawal et al. introduced the Apriori 
algorithm as one of the first association analysis algorithms, in which the property of frequent itemset is applied 
successfully by R.  Agrawal27. In recent years many researchers have proposed many improved algorithms, such 
as FP-Growth28,29, Apriori-Hybrid30, Fuzzy association  rule31, etc.

In this study, we utilized the FP-Growth algorithm for association analysis. In terms of computational, storage 
space, and time, the FP-Growth is one of the best algorithms for association analysis due to one-time search-
ing itemset space. The pseudo-code of the FP-Growth algorithm is shown in Tables 1 and 2 in Supplementory 
method in more detail.

Results
We executed the following steps to the miRNA and mRNA data (Fig. 1). In the feature selection step, we applied 
a graph-based method to the miRNA data. First, the graph was constructed with 1545 nodes and 1,194,285 
edges, and the weights of the edges were calculated based on the AMGM and cosine similarity measures. Next, 
the Louvain algorithm identified 40 communities/clusters from each; and finally, 73 candidate miRNAs were 
selected among communities/clusters using the MIS algorithm. Moreover, β and γ, the parameters of the graph-
based method were set to 0.6 and 0.3, respectively.

In mRNA data, first, we used the filter method based on the AMGM measure to remove some irrelevant 
features. In the primary feature selection, we selected 1000 top features with the highest AMGM value, then we 

(13)Accuracy =
TP + TN

TP + FN + FP + TN
× 100

(14)F1 − score = 2
Precision× Recall

Precision+ Recall

(15)Recall =
TP

TP + FN

(16)Precision =
TP

TP + FP

(17)Support(A → C) =
support(A ∪ C)

n

(18)Confidence(A → C) = P(C|A) =
support(A ∪ C)

support(A)

(19)Lift(A → C) =
P(A ∪ C)

P(A)P(C)
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employed a graph-based method for the mRNA data. The graph was composed of 1000 nodes and 504,510 edges. 
Next, community detection of the mRNA network graph was performed by the Louvain algorithm that identified 
73 communities/clusters. Finally, 77 candidate mRNAs were selected from communities/clusters using the MIS 
algorithm where β and γ parameters of the graph-based method, were set to 0.5 and 0.3, respectively. The list of 
73 candidate miRNAs and 77 candidate mRNAs are reported in Supplementary Tables 1 and 2, respectively. Also, 
these candidate mRNAs and miRNAs are illustrated in Figs. 2a and 3a based on their sorted AMGM measure.

We applied the classifier to evaluate the discrimination power of candidate features (mRNAs/miRNAs) among 
RCC subtypes. In this regard, the self-organizing deep auto-encoder was utilized for performing classification 
tasks. The accuracy,  F1-score, and AUC of mRNA and miRNA data are reported individually in Table 2. Also, 
the confusion matrix and ROC curve are illustrated for miRNA and mRNA data in Figs. 2 and 3, respectively. 
Results indicated that machine learning-derived mRNAs (Accuracy = 92%) and miRNAs (Accuracy = 95%) panels 
could significantly distinguish these subtypes from each other with high accuracy.

In similar studies, all subtypes, including ccRCC, pRCC, chRCC, WT (Wilms tumor), and RT (Rhabdoid 
tumor), were classified based on selected miRNAs in the feature selection process. However, these subtypes are 
different in cancer nature and patient type. The ccRCC, pRCC, and chRCC are common adult kidney cancer. In 
contrast, WT and RT are common pediatric kidney cancer. Thus, feature selection and classification of all sub-
types may lead to missing information related to pediatric kidney cancer subtypes. In addition, the comparison 
classification accuracy of similar studies with the proposed method will be difficult due to this difference. Nev-
ertheless, the accuracy of the applied methods is illustrated in Table 3. Also, we do not find any similar studies 
related to ccRCC, pRCC, and chRCC subtypes based on mRNA data for comparison.

In the association rule mining process, candidate features were scaled into the [0 1] range using min–max 
normalization. Next, candidate features (mRNAs/miRNAs) were discretized into three categories, including low, 
medium, and high levels, so that the number of miRNA and mRNA items were equal to 212 and 233, respectively. 
Then, the FP-Growth algorithm was applied to generate frequent itemsets and association rules. Parameters of 
the algorithm, including min-support (frequent itemset), max-length (maximum length of frequent itemset), 
and lift (association rule), were set to 0.1, 4, and 1.1, sequentially.

To discover patterns, association rules that consequently were equal to KIRC/KIRP/KICH were selected. In 
the miRNA data, the number of association rules related to KIRC/KIRP was equal to 27,635/23,198. Moreover, 
in the mRNA data, the number of association rules related to KIRC/KIRP was equal to 94,354/28,956. Due to 

Figure 2.  The performance of feature selection and classification steps in the miRNA data. (a) Bar plot 
of candidate miRNAs (73) based on normalized AMGM values. (b) Confusion matrix of training and test 
data, in which 0, 1, and 2 are pointed to KIRP, KIRC, and KICH groups, respectively. (c) Receiver Operating 
Characteristic (ROC) curve of training and test data. The Area under the Curve of Receiver Operating 
Characteristic (AUC-ROC) is reported for each curve.
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Figure 3.  The presentation of feature selection and classification steps in the mRNA data. (a) Candidate 
mRNAs (77) are presented by Bar plot based on normalized AMGM values. (b) Training and test data confusion 
matrix. (c) ROC curve of training and test data. The AUC-ROC is reported for each curve. 0, 1, and 2 are 
pointed to KIRP, KIRC, and KICH groups, respectively. AUC‑ROC Area under the Curve of Receiver Operating 
Characteristic.

Table 2.  The performance metrics for the classification step. Significant values are in bold. AUC  Area under 
the Curve, KIRC kidney renal clear cell carcinoma, KIRP kidney renal papillary cell carcinoma, KICH kidney 
chromophobe carcinoma.

miRNA mRNA

Train Test Validation Train Test Validation

Accuracy (%) 96 95 96 93 92 91

F1-score (KIRP) 0.95 0.93 0.93 0.90 0.90 0.89

F1-score (KIRC) 0.98 0.96 0.98 0.95 0.95 0.95

F1-score (KICH) 0.92 0.95 0.92 0.83 0.78 0.75

AUC (KIRP) 0.96 0.95 0.94 0.93 0.91 0.91

AUC (KIRC) 0.97 0.95 0.96 0.93 0.94 0.94

AUC (KICH) 0.95 0.97 0.92 0.91 0.89 0.80

Table 3.  Comparison of classification accuracy based on miRNA data. Significant values are in bold.

Methods Accuracy (%) Ref.

One way ANOVA + logistic regression (all subtypes) 86 32

One way ANOVA + decision tree (all subtypes) 87 33

Resampling + NCA + LSTM (all subtypes) 95.5 34

AMGM + deep neuro-fuzzy (all subtypes) 93.2 35

Proposed method (ccRCC, pRCC, and chRCC subtypes) 95 –



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16393  | https://doi.org/10.1038/s41598-022-20783-7

www.nature.com/scientificreports/

the lack of samples in the KICH subtype, frequent itemsets and related association rules were not generated; 
the support count of itemsets was less than the min-support threshold. In the antecedent part of the selected 
association rules, mRNAs and miRNAs with the highest repeat count were considered significant features in each 
RCC subtype. In Figs. 4a,b and 5a,b, significant miRNAs and mRNAs are shown as a graph network based on 
repeat count in KIRC/KIRP rules. Moreover, the strength distribution of KIRC/KIRP association rules accord-
ing to their support, lift, and confidence is illustrated in Figs. 4c,d and 5c,d for miRNA and mRNA, respectively. 
In this regard, mRNAs and miRNAs were identified based on sorted repeat count (Supplementary Table 3). We 
hypothesized that these top features with the highest repeat counts may play a fundamental role in the patho-
genesis of specific subtypes.

Box plots of five top miRNAs and mRNAs in KIRC and KIRP subtypes are illustrated in Fig. 6. The compari-
son of medians, interquartile ranges, and whiskers in box plots of significant miRNAs and mRNAs demonstrated 
a notable difference in all RCC subtypes. The pair plot of five top miRNAs and mRNAs of KIRC/KIRP rules are 
illustrated in Supplementary Figs. 1c,d and 2c,d, respectively. Moreover, the correlation of the top ten miRNAs 
and mRNAs of KRIC/KIRP rules is shown in Supplementary Figs. 1a,b and 2a,b, respectively based on the 
Spearman correlation.

CSN7A (ENSG00000111652.8) and NMD3 (ENSG00000169251.11) were the most frequent itemset with 
5774 and 2306 repeat counts in KIRC and KIRP association rules, respectively. Moreover, miR-28 and miR-
125a were the most frequent itemset with 2642 and 2591 repeat counts in KIRC and KIRP association rules, 
respectively. As a result, we decided to examine these miRNAs and mRNAs more closely using other association 
rules to investigate their relation with another feature. More in-depth coverage of these findings is available in 

Figure 4.  The relationship and specification of the KIRC/KIRP association rules in the miRNA data. Graph 
network of top miRNAs with high repeat count in (a) KIRC and (b) KIRP association rules. The most frequent 
miRNAs were displayed with the weight of the edge based on repeat counts. Also, the AMGM value of miRNAs 
was illustrated with the size of the node. Strength distribution of (c) KIRC and (d) KIRP association rules 
according to their support, lift, and confidence. KIRC kidney renal clear cell carcinoma, KIRP kidney renal 
papillary cell carcinoma, KICH kidney chromophobe carcinoma.
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Figure 5.  The KIRC/KIRP association rules in the mRNA data. Graph network of (a) KIRC and (b) KIRP 
association rules of top mRNAs with a high repeat count. The most frequent mRNAs were displayed with the 
weight of the edge based on repeat counts. The mRNAs’ AMGM value is illustrated with the size of the node. 
Strength distribution of (c) KIRC and (d) KIRP association rules according to their support, lift, and confidence. 
KIRC kidney renal clear cell carcinoma, KIRP kidney renal papillary cell carcinoma, KICH kidney chromophobe 
carcinoma.

the discussion section of the study. In this regard, we showed these relations based on association rules in the 
graph network (Figs. 7 and 8).

In Fig. 7a, it is obvious that hsa-miR-28, the most frequent miRNA in KIRC association rules, has a high 
dependency on hsa-let-7i, hsa-miR-196a-2, hsa-miR-324, hsa-miR-198, and hsa-miR-152, respectively. In Fig. 8a, 
it is clear that hsa-miR-125a, the most frequent miRNA in KIRP association rules, has a high dependency on hsa-
miR-99b, hsa-miR-374b, hsa-miR-186, hsa-miR-28, and hsa-miR-32, respectively. In Fig. 7b, it is noticeable that 
CSN7A, the most frequent mRNA in KIRC association rules, has a high dependency on ENSG00000110801.12 
(PSMD9), ENSG00000126247.9 (CAPNS1), ENSG00000130560.7 (UBAC1), ENSG00000100138.12 (SNU13), 
and ENSG00000143344.14 (RGL1: Ral guanine nucleotide dissociation stimulators like 1), respectively. In Fig. 8b, 
it is observable that ENSG00000169251.11 (NMD3), the most frequent miRNA in KIRP association rules, has a 
high dependency on ENSG00000126247.9 (CAPNS1), ENSG00000185085.2 INTS5 (integrator complex subunit 
5), and ENSG00000163001.10 (CFAP36), respectively.

Discussion
We carried out a comprehensive machine learning analysis of clinically significant patterns of the miRNAs and 
mRNAs within the RCC subtypes. A panel of 77 candidate mRNAs and a panel of 73 miRNAs could discrimi-
nate KIRC from KIRP with high accuracy. The association rule mining analysis could identify top mRNAs and 
miRNAs with the highest repeat counts, suggesting their possible pathological roles in each RCC subtype. The 
CSN7A and miR-28 along with the NMD3 and miR-125a were the most frequent itemsets in the KIRC and 
KIRP association rules, respectively. The roles of these mRNAs have not been studied before in the RCC. In the 
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Figure 7.  The relationship and specification of the miRNAs and mRNAs are based on the KIRC association 
rules. Graph network of (a) has-miR-28 (with support > 1.66) related association rules, in which the identified 
miRNA, its rules, and miRNAs were presented, in orange, yellow, and blue colors, respectively. (b) Graph 
network of ENSG00000111652.8 related association rules (with support > 0.3 and lift > 1.4), in which 
ENSG00000111652.8, rules, mRNAs were presented, in red, yellow, and blue colors, respectively.
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Figure 8.  The relationship and specification of the miRNAs and mRNAs are based on the KIRP association 
rules. Graph network of (a) has-miR-125a (with support > 1.26) related association rules, in which the 
identified miRNA, its rules, and miRNAs were presented, in orange, yellow, and blue colors, respectively. (b) 
Graph network of ENSG00000169251.1 related association rules (with support > 0.2 and lift > 1.145), in which 
ENSG00000169251.1, rules, mRNAs were presented, in red, yellow, and blue colors, respectively.
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following sections, we present a brief discussion on the possible roles of these mRNAs and microRNAs in the 
pathogenesis of the KIRC and KIRP based on the published literature.

Candidate RNAs in KIRC. The CSN7A, UBAC1, PSMD9, RNF40, and Capn4 were identified as candida 
mRNAs in the KIRC with the highest repeat counts by the association rule mining analysis. Machine learning 
approaches could detect novel targets in the field of the KIRC and bring the UPS (ubiquitin–proteasome sys-
tem) and its components (CSN7A, UBAC1, PSMD9, and RNF40) into the focus of interest. The degradation of 
regulatory proteins by the UPS has an important function in controlling the cell cycle progression, DNA repair, 
response to extracellular stress, and signal transduction. The ubiquitin, proteasome, ubiquitinating enzymes 
(including ubiquitin-activating (E1), -conjugating (E2s), and -ligases (E3s) enzymes) along with deubiquitinat-
ing enzymes are the key components of the UPS  system36. Most of the E3 ligases are cullin-RING ligases (CRLs) 
that determine the substrate-selectivity in response to specific stimuli either to degrade by the proteasome 
or modify their function. The COP9 signalosome (CSN), another component of the UPS, is a multi-subunit 
(CSN 1–8) metalloprotease  complex37 that plays roles in gene expression, cell-cycle control, and DNA-damage 
 response38, and increases the stability of some proteins including  EGFR39. Furthermore, the CSN plays a role in 
controlling the activity of NF-κB, an inflammatory transcriptional regulator involved in cell survival, prolifera-
tion, and  transformation40,41.

The VHL is the substrate recognition subunit of the E3 ubiquitin ligase complex that polyubiquitylates the 
hydroxylated targets under  normoxia42. Under the loss of the VHL, the degradation of its specific targets, hypoxia 
inducible factors (HIF1α and HIF2α) does not occur, making a pseudohypoxia state. Both VHL deficiency and 
the accumulation of the HIF-1 promote the NF-κB activity that subsequently stimulates an NF-κB/PI3K/AKT/
TGF-β/EGFR/IKK signaling cascade, resulting in the activation of proliferation and glycolytic pathways, a pro-
angiogenic and apoptosis-resistant phenotype, and highly vascularized  tumors43,44. It is reported that the CSN 
elevates the efficacy of the VHL-mediated HIF-1α recognizing, ubiquitination, and  degradation45.

In our deep learning analysis, the CSN7A (COPS7A), 7a subunit of the CSN, was identified as the first top 
mRNA with the highest role in the KIRC. It is reported that in tumor tissues, the CSN7A level is decreased 
which may be associated with the oxidative phosphorylation  pathway46 and the transcription-coupled nucleotide 
excision DNA  repair47. Moreover, an overexpressed CSN7A could stimulate the IκBα deubiquitinylation and; 
consequently, suppressing the transcriptional activity of the NF-κB48. The mechanism by which the CSN7A can 
impact KIRC has not been defined; however, the CSN7A may function alike in the KIRC.

The UBAC1, the second identified mRNA in this study, is a subunit of the KPC complex, an E3 ubiquitin-
protein ligase. The UBAC1 acts with the proteasome and ubiquitinated proteins such as the Nf-κB49,50. The 
UBAC1 also contributes to the inflammatory signal transduction pathways and affects cell proliferation and 
viability in  keratinocytes51. The role of the UBAC1 in the KIRC needs to be clarified. The PSMD9 was  3rd top 
KIRC-related mRNA found in our rule mining analysis. The PSMD9, as a part of the 26S proteasome, regulates 
protein  degradation52. The PSMD9 is overexpressed in tumor tissues and associated with cell proliferation, hostile 

Figure 9.  Possible roles of the deep learning-derived mRNAs and miRNAs in the pathogenesis of KIRC and 
KIRP (identified by deep learning methods). (A) The CSN7A, UBAC1, PSMD9, RNF40, Capn4, TMEMs, 
CFL1, CFL1, and ZBTB7A were identified as candida mRNAs (indicated by 1–10) in KIRC with the highest 
repeat counts by the Association Rule Mining analysis. The UPS is composed of Ub, proteasome, ubiquitinating 
(E1, E2s, and E3s), and deubiquitination enzymes. The VHL is the substrate recognition subunit of a CRL 
complex that polyubiquitylates its targets (HIF and NF-κB) to be degraded. In KIRC, the VHL gene is mutated 
or downregulated that result in the accumulation of these targets, making a pseudohypoxia state and highly 
vascularized tumors. The CSN7A, UBAC1, and PSMD9 are components of the UPS identified in this study. 
(1) CSN7A via IκBα deubiquitinylation can suppress the transcription activity of the NF-κB. (2) The UBAC1 is 
involved in ubiquitination and degradation of the cell cycle proteins. (3) the PSMD9 (P9) may be involved in 
the maintenance of integrity and morphology of nucleolus and impact cell survival and cell cycle regulation. 
The COPS7A in the KIRC association rules has a high dependency on PSMD9, Capn4, and UBAC1, SNU13, 
respectively (presented by dashed lines). (B) The NMD3, ZNF41, CFAP36, FGFR1OP2, RGL1, BTF3, RIOK3, 
NOL8, ANP32A, and MTFMT were identified as the top ten mRNA with high association rules in the KIRP. 
(1) The NMD3 is a nuclear adaptor protein that transports the ribosomal 60S subunit into the cytoplasm and 
participates in the cytoplasmic maturation of ribosomal 60S particles. It also affects RNA biosynthesis, mainly 
ribosomal RNA, and may impact tumorigenesis. (2) ZFP41 is a regulator of the transcription of different 
genes. (3) The CFAP36 is a binding partner of the Arl3, a small GTPase in the primary cilia. The primary 
cilia participate in the cilia formation, regulation of the cell cycle, and mitosis of cancer cells. The NMD3 in 
KIRP has a high dependency on CAPNS1, INTS5, and CFAP36, respectively (presented by dashed lines). 
For more details, please see the main text and Supplementary file, discussion part. ANP32A acidic nuclear 
phosphoprotein 32 family member A, BLES03 basophilic leukemia-expressed protein, BTF3 basic transcription 
factor 3, CFAP36 Cilia and flagella-associated protein 36, CAPN4 calpain small subunit 1, CFL1 Cofilin1, CRLs 
E3 ligases are cullin-RING ligases, CSN7A COP9 signalosome subunit 7A, FAK focal adhesion kinase, FGF 
fibroblast growth factor, FGFR1OP2 FGF receptor 1 oncogene partner 2, HIF1 hypoxia inducible factors, INTS5 
integrator complex subunit 5, MMP2/9 matrix metalloproteinase 2/9, MTFMT mitochondrial methionyl-tRNA 
formyltransferase, NF‑κB nuclear factor kappa B, NOL8 nucleolar protein 8, PSMD9 proteasome 26S subunit, 
non-ATPase 9, RGL1 Ral guanine nucleotide dissociation stimulators like 1, RNF40 ring finger protein 40, 
RIOK3 RIO kinase 3, SNU13 small nuclear ribonucleoprotein 13, TMEM94 transmembrane protein 94, TZ 
transition zone, Ub ubiquitin, UBAC1 UBA domain containing 1, UPS ubiquitin–proteasome system, ZBTB7A 
zinc finger and BTB domain-containing 7A, ZFP41 Zinc finger protein 41.
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tumor outcome, and resistance to the  therapy53–55. Since different tumor suppressors and oncogenes are controlled 
by the Ub- and proteosome-mediated degradation, the CSN7A, UBAC1, PSMD9, and RNF40 may play impor-
tant roles in the pathogenesis of the KIRC. The CSN7A in the KIRC association rules has a high dependency on 
PSMD9, CAPNS1, and UBAC1, SNU13, respectively. Our study may open an innovative horizon to investigate 
the role of the CSN7A, UBAC1, PSMD9, and RNF40 in the pathogenesis of the KIRC.

microRNAs are critical managers of the development and progression of the RCC. They function as oncomirs 
or anti-oncomirs. miR-28, let-7i, miR-23b, miR-125a, miR-22 were top five identified miRNAs that were dys-
regulated in KIRC. For more details see Supplementary file, discussion part.

Candidate RNAs in KIRP. In the Rule mining analysis, the NMD3, ZNF41, CFAP36, FGFR1OP2, and RGL1 
were identified as the top five mRNA with high association rules in the KIRP (≥ 2195).

The transcript patterns of the ribosomal proteins are tumor- and tissue-specific56 and their induced abnormal 
translation can provoke a malignant phenotype independent of chromatin remodeling and the deregulation of 
the transcriptional  process57. The 60S ribosomal export protein NMD3 (NMD3) was the first identified mRNA 
involved in the pathogenesis of the KIRP in our study. The NMD3 is a nuclear adaptor protein that transports 
the 60S subunit into the cytoplasm via the nuclear pore complex and participates in the cytoplasmic matura-
tion of 60S  particles58,59. In the cytoplasm, the release of the NMD3p from 60S subunits needs a GTPase and 
the ribosomal protein (Rpl10p). Any mutation in these proteins leads to cytoplasmic retention of the NMD3 on 
pre-60S subunits, blocking ribosome assembly and  biogenesis60,61. The NMD3 also exerts a significant effect on 
RNA biosynthesis, mainly ribosomal RNA, and consequently may impact  tumorigenesis62. A direct role of the 
NMD3 needs to be elucidated in the KIRP.

Respectively, miR-125a, miR-23b, miR-210, miR-99b, and miR-101-2 were the top five identified miRNAs 
dysregulated in KIRP. The possible pathological roles of the candidate mRNAs and miRNAs identified in this 
study are presented in Fig. 9 and explained in the Supplementary file in more detail. Although much remains 
to elucidate the KIRP mechanism, the roles of the NMD3, ZNF41, CFAP36, FGFR1OP2, and RGL1 are of con-
siderable interest. The NMD3 in KIRP has a high dependency on CAPNS1, INTS5, and CFAP36, respectively.

The molecular features presented in this study will offer new insights into the underlying mechanisms that 
are responsible for the initiation and progression of KIRC and KIRP. Moreover, the ability to diagnose KIRC 
and KIRP with a high certainty level will help pathologists accuratelydifferentiate the most common subtypes 
of RCC. In this way, appropriate clinical decision-making strategies can be obtained. Furthermore, the ability 
of artificial intelligence for accurate differentiation of RCC may reduce unnecessary intervention rates. Our 
attempts to develop molecular discriminating patterns had some limitations. First of all, we did not evaluate 
the molecular mechanism of the candidate RNAs in the RCC models. In vitro and in vivo studies are needed to 
be performed to achieve this goal. Second, we did not validate the identified RNAs in clinical samples. Future 
studies would address this issue in large-sample-sized studies. We believe that adding other features from muta-
tions, polymorphisms, alterations in copy number, and DNA methylation platforms would effectively tackle the 
discriminating problem of RCC subtypes and improve their early detection.

Conclusion
In this paper, deep learning-driven biomarkers were presented for discriminating common subtypes of RCC. 
Panels of 77 mRNAs and 73 miRNAs could discriminate the KIRC, KIRP, and KICH subtypes from each other 
with high accuracy. The CSN7A and miR-28 along with the NMD3 and miR-125a were the most frequent itemsets 
in the KIRC and KIRP association rules, respectively. Due to a frequent mutation in protein-coding regions and 
an elevated burden of unfolded proteins; an elevated protein turnover was necessary for those speedily dividing 
cancer cells. Hence, the inhibition of the UPS components appeared to be a hopeful strategy for KIRC therapy. 
The identified mRNAs and microRNAs in this study can regulate signal transduction, cell cycle machinery, 
and apoptosis and all are relevant contributors to carcinogenesis and cancer progression. Therefore, they may 
provide further insight into the pathogenesis, diagnosis, prognosis, and molecular-targeted therapy in RCC 
subtypes (Fig. 9).

Data availability
The data obtained from the artificial intelligence approaches will be available from the corresponding authors 
upon request.
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